skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sekhar, Laligam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Monitoring surgical instruments is an essential task in computer-assisted interventions and surgical robotics. It is also important for navigation, data analysis, skill as- sessment and surgical workflow analysis in conventional surgery. However, there are no standard datasets and benchmarks for tool identification in neurosurgery. To this end, we are releasing a novel neurosurgical instrument seg- mentation dataset called NeuroID for advancing research in the field. Delineating surgical tools from the background requires accurate pixel-wise instrument segmentation. In this paper, we present a comparison between three encoder- decoder approaches to binary segmentation of neurosurgi- cal instruments, where we classify each pixel in the image to be either tool or background. A baseline performance was obtained by using heuristics to combine extracted features. We also extend the analysis to a publicly available robotic instrument segmentation dataset and include its results. The source code for our methods and the neurosurgical instru- ment dataset will be made publicly available1 to facilitate reproducibility. 
    more » « less